Skip to content

Conversation

@yiyixuxu
Copy link
Collaborator

@yiyixuxu yiyixuxu commented Oct 4, 2024

unit test

import torch

# test_dtype = torch.bfloat16
# test_device = "cuda"
test_dtype = torch.float32
test_device = "cpu"

from sgm.modules.diffusionmodules.dit import DiffusionTransformer
from huggingface_hub import hf_hub_download
from diffusers import CogView3PlusTransformer2DModel
from yiyi_convert_cogview3_to_diffusers import convert_cogview3_transformer_checkpoint_to_diffusers

# (1). create common inputs for testing

x = torch.load("dit_x.pt").to(test_device).to(test_dtype) # [2, 16, 128, 128]
timesteps = torch.load("dit_timesteps.pt").to(test_device).to(test_dtype) # [2]
context = torch.load("dit_context.pt").to(test_device).to(test_dtype) #[2, 224, 4096]
y = torch.load("dit_y.pt").to(test_device).to(test_dtype) #[2, 1536]
kwargs = {'target_size': [(1024, 1024)], "idx": timesteps}

# (2). load and clean up state_dict
repo_id = "ZP2HF/CogView3-SAT"
filename ="cogview3plus_3b/1/mp_rank_00_model_states.pt"
ckpt_path_cogview3_plus = hf_hub_download(repo_id=repo_id, filename=filename)
state_dict = torch.load(ckpt_path_cogview3_plus)["module"]
state_dict = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items()}

# (3) make model(original implementation)
model_config = {
    "in_channels": 16,
    "out_channels": 16,
    "hidden_size": 2560,
    "patch_size": 2,
    "num_layers": 30,
    "num_attention_heads": 64,
    "text_length": 224,
    "time_embed_dim": 512,
    "num_classes": "sequential",
    "adm_in_channels": 1536,
    "modules": {
        'pos_embed_config': {
            'target': 'sgm.modules.diffusionmodules.dit.PositionEmbeddingMixin',
            'params': {'max_height': 128, 'max_width': 128, 'max_length': 4096}
        },
        'patch_embed_config': {
            'target': 'sgm.modules.diffusionmodules.dit.ImagePatchEmbeddingMixin',
            'params': {'text_hidden_size': 4096}
        },
        'attention_config': {
            'target': 'sgm.modules.diffusionmodules.dit.AdalnAttentionMixin',
            'params': {'qk_ln': True}
        },
        'final_layer_config': {
            'target': 'sgm.modules.diffusionmodules.dit.FinalLayerMixin'
        }
    },
    "layernorm_order": "pre",
    "activation_func": None,
    "elementwise_affine": False,
    "parallel_output": True,
    "block_size": 16,
    "dtype": "fp32" if test_dtype == torch.float32 else "bf16"
}
model_sat = DiffusionTransformer(**model_config)
model_sat.to(test_device).to(test_dtype)
missing_keys, unexpected_keys = model_sat.load_state_dict(state_dict, strict=False)
print(f"missing_keys: {missing_keys}")
print(f"unexpected_keys: {unexpected_keys}")

# run a forward pass
model_sat.eval()
with torch.no_grad():
    out = model_sat(
        x=x, 
        timesteps=timesteps,
        context=context, 
        y=y, 
        **kwargs)

# (4) make model(diffusers)
converted_state_dict = convert_cogview3_transformer_checkpoint_to_diffusers(state_dict)

model = CogView3PlusTransformer2DModel()
model.to(test_device).to(test_dtype)
model.load_state_dict(converted_state_dict, strict=True)

model.eval()
with torch.no_grad():
    out_d = model(
        hidden_states=x, 
        timestep=timesteps, 
        encoder_hidden_states=context, 
        pooled_projections=y, 
        return_dict=False)[0]

print(f" output shape: {out_d.shape}")
print(f" expected output shape: {out.shape}")
assert out_d.shape == out.shape
assert (out_d - out).abs().max() < 1e-4, f"max diff: {(out_d - out).abs().max()}"

@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

@yiyixuxu yiyixuxu closed this Oct 15, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants